PROPULSION /
CHASSIS & HABITACLE /
ADAS /
ELECTRICITE & ELECTRONIQUE
CONCEPTION / PRODUCTION / POIDS LOURD / FORMATION-EVENEMENT / SOCIETE |
RECHERCHE SUR LE SITE |
||
15 octobre 2020
SystemX lance le projet Cockpit et Assistant Bidirectionnel (CAB), 2è projet de son programme IA2
Comment développer un assistant virtuel qui apprenne « de » et « à » l'opérateur de systèmes critiques ou de réseaux sensibles (véhicule, réseau, infrastructure) à piloter ? En hybridant intelligence artificielle (IA) et interaction Homme-Machine (IHM), le projet CAB a pour objectif d'améliorer la coopération homme-machine. Il vise à développer un démonstrateur de cockpit intelligent, intégrant un assistant virtuel bidirectionnel et multimodal pour accompagner l'opérateur dans ses prises de décision. Parmi les principaux verrous scientifiques et technologiques du projet : la représentation et la hierarchisation des connaissances, la pertinence de l'analyse et des recommandations, l'explicabilité et la personnalisation de l'expertise selon le profil de l'opérateur.
Palaiseau, le 15 octobre 2020 - SystemX, unique IRT dédié à l'ingénierie numérique des systèmes du futur, lance le projet Cockpit et Assistant Bidirectionnel (CAB), deuxième projet de son programme de recherche « Intelligence Artificielle et Ingénierie Augmentée » (IA2). Ce projet de R&D collaboratif d'une durée de 48 mois, réunit 4 industriels (Dassault Aviation, Orange, RTE, SNCF) autour de cas d'usage concrets. Il vise à définir et évaluer un cockpit intelligent intégrant un agent virtuel qui augmentera en temps réel les capacités de prise de décision de l'opérateur face à des situations complexes et/ou atypiques, et dont la particularité est qu'il apprenne de et à l'expert. Ces travaux de recherche articulant les domaines de l'IA et de l'IHM sont inédits et répondent à une demande croissante de la part des opérateurs de systèmes critiques ou de réseaux sensibles. Le pilotage de systèmes critiques (avion, voiture, train, etc.) ou de réseaux sensibles (transport, électricité, télécoms etc.) implique pour l'opérateur de gérer une masse importante de données en provenance du système à piloter, liées à son environnement et à la complexité de la situation dans lequel il se trouve. Cela conduit à une augmentation significative de sa charge cognitive. L'automatisation et la mise à disposition d'assistants virtuels sont couramment utilisées dans les situations où la décision finale revient à l'humain. La qualité de la coopération et la complémentarité de l'apprentissage entre l'homme et son assistant virtuel sont essentielles. L'objectif du projet CAB est le développement et le prototypage d'un cockpit de tests générique - ouvert en termes d'applications industrielles -, dans lequel il sera possible d'évaluer les formes d'échanges entre l'expert et une IA qui apprend en continu, à la fois des flux d'informations reçus mais aussi des décisions prises par l'homme. L'aspect explicatif des recommandations de l'IA est central dans ce projet pour donner de la valeur ajoutée à l'opérateur dans le cadre de sa prise de décision. L'assistant virtuel saura déterminer le profil de l'opérateur, son niveau de charge cognitive, et adapter les flux d'informations remontés vers l'opérateur en vue de gérer dans les meilleures conditions une situation complexe et/ou atypique. Parmi les principaux verrous scientifiques à lever : la représentation et le développement de modèles de connaissances, l'apprentissage bidirectionnel de l'opérateur et de l'IA, la caractérisation et compréhension d'une situation complexe par l'assistant virtuel et la pertinence de l'analyse, la personnalisation des recommandations à la situation et au niveau d'expertise de l'opérateur (junior, senior), l'explicabilité des recommandations faites par l'assistant virtuel ou encore l'acceptabilité par humain. Sera également étudiée dans ce projet la notion de multimodalité, pour comprendre avec quel(s) sens des opérateurs, il est le plus pertinent de faire interagir l'assistant bidirectionnel : modes d'interaction visuels, auditifs/vocaux, tactiles ou combinés, ou encore surveillance de l'opérateur (eye tracking, données biométriques, etc.) 4 cas d'usage étudiés
« Ce projet vise à concevoir des systèmes hybrides impliquant l'utilisation de techniques d'intelligence artificielle (représentation de connaissances, machine learning, aide à la décision) et d'Interfaces Homme-Machine multimodales bidirectionnelles (coopération homme machine, IHMs personnalisées, IHMs adaptatives, data visualisation), tout en tenant compte des facteurs humains (charge cognitive, modes de contrôle, modèle humain). Les assistants virtuels bidirectionnels ont vocation à rendre les opérateurs encore plus performants. En apprenant d'eux et en anticipant sur les actions à venir, ils s'inscrivent dans le sens d'une véritable coopération au service de l'efficacité opérationnelle », explique Walid Achour, chef de projet CAB. Source : SystemX |